
予測発電電力量と平均日射量、予想節約電気料金

平均日射量 (kWh/(m²·日))

1月	2月	3月	4月	5月	6月
2.85	3.20	3.59	4.19	4.74	4.05
7月	8月	9月	10月	11月	12月
4.42	4.91	3.42	2.86	2.61	2.64

予測発電電力量 (kWh/月)

1月	2月	3月	4月	5月	6月
6,106	6,183	7,274	8,209	9,585	7,459
7月	8月	9月	10月	11月	12月
8,423	9,353	6,698	5,788	5,115	5,658

予想節約電気料金 (円/月)

1月	2月	3月	4月	5月	6月
158,264	160,272	188,536	212,780	248,437	193,338
7月	8月	9月	10月	11月	12月
218,330	242,441	173,623	150,013	132,592	146,644

年間予測発電電力量 : 85,851 kWh

年間予想節約電気料金: 2,225,271円

・本シミュレーションはあくまで目安となりますので、実際の発電量と異なります。 実際の発電量との差異の原因は、以下を想定します。

- ・日射量の年変動、NEDO測定点と発電所設置場所の気象条件の違い・設置場所、設備固有の条件による影響
- ・周囲の建築物・設備自身等による影、草、パネル面汚れ等の環境要因 ・電圧上昇抑制等の系統からの要因
- ・設備効率やばらつき、故障、劣化、障害、点検等
- ・天候による停止、発電量の低下、雷、雪、霜、水害、またその他の自然的原因

計算条件

- 日射量のデータ: NEDOの全国日射量データベース (MET-PV11) にて
 - 傾斜角と方位角を設定して1年分の日毎データを入手し、平均年、多照年、寡照年も入手しています。
- ・計算ロジック : [太陽電池容量×日射量のデータ (日毎) ×システムの効率×増加積載によるパワコン出力超過分カット] で 日毎の発電量を計算し、月間、年間で合計します。温度については考慮しておりません。